
헬스케어 시장에서의 생성형 인공지능(Gen AI)
헬스케어 시장에서의 생성 인공지능(Gen AI) - 글로벌 산업 평가 및 예측
다루는 세그먼트
에 의해 기술 자연어 처리(NLP), 딥러닝, 예측 분석, 생성적 적대 네트워크, 트랜스포머 신경망
에 의해 요소 솔루션, 서비스
양식별 텍스트, 이미지, 비디오
에 의해 애플리케이션 진단 영상, 약물 발견, 정밀 의학, 개인화된 치료 계획, 가상 건강 보조원, 챗봇, 원격 환자 모니터링
최종 용도별 병원 및 진료소, 제약 회사, 의료 기기 제조업체, 연구 기관
에 의해 지역 북미, 유럽, 아시아 태평양, 라틴 아메리카, 중동 및 아프리카
스냅 사진
![]() |
2024 |
![]() |
2025 - 2034 |
![]() |
2019 - 2023 |
![]() |
USD 1.8 십억 |
![]() |
USD 34.61 십억 |
![]() |
34.4% |
![]() |
아시아 태평양 |
![]() |
북아메리카 |

1,4년 글로벌 투석장비 시장 규모는 2023억 달러로 추산된다. 1.8년에는 2024억 XNUMX천만 달러. 시장은 다음과 같은 수준에 도달할 것으로 예상됩니다. 34.61년까지 2034억 달러, 수익을 등록하세요 34.4% 예측 기간(2025-2034) 동안.
프리미엄 인사이트:
의료 시장에서 생성적 인공 지능(AI)의 성장은 COVID-19 팬데믹 이후 빠르게 기울고 있으며, 의료 분야에서 보다 유능하고 진보된 솔루션에 대한 필요성이 커지고 있습니다. 생성적 인공 지능(Generative AI 및 GenAI라고도 함)의 도입과 통합을 주도하는 핵심 요인은 비정형 의료 데이터의 양이 빠르게 증가하고 있으며 이러한 데이터 세트의 빠른 필터링 및 분석에 대한 필요성이 커지고 있다는 것입니다. 생성적 AI 기반 솔루션은 약물 발견, 질병 진단 및 스크리닝, 부작용 예측, 약물 재활용, 의료 챗봇, 가상 건강 보조원, 맞춤형 치료 계획 의료 시뮬레이션, 고객 서비스 등에 사용되고 있습니다.
자연어 처리(NLP), 딥러닝, 예측 분석, 생성적 적대 신경망, 트랜스포머 신경망을 통합하여 생성적 AI가 대규모 데이터 세트를 분석, 추출하고 의미 있는 통찰력을 제공하는 향상된 기능을 갖추고 있으며, 그 속도와 정확도는 타의 추종을 불허합니다.
생성 AI는 계속해서 빠르게 인기를 얻고 있으며 병원과 진료소, 제약 회사, 의료 기기 제조업체, 연구 기관 전반의 운영에 점점 더 통합되고 있습니다. 진단 영상, 약물 발견, 정밀 의학, 개인화된 치료 계획, 가상 건강 보조원, 챗봇, 원격 환자 모니터링에서 매우 효율적인 것으로 입증되었으며, 의료 서비스 제공에서 인간 노동력에 비해 비교적 비용 효율적입니다. 또한 반복적인 작업의 자동화, 워크플로 최적화, 전반적인 운영 비용 최소화를 통해 정확성과 속도를 제공합니다. 의료 분야에서 생성 AI의 주요 응용 분야는 의료 이미지에서 기관이나 이상을 자동으로 분할하는 것입니다. 이는 정확할 뿐만 아니라 의료 전문가의 시간을 절약합니다. 병리학에서 생성 AI는 의료 이미지의 패턴을 분석하여 병리적 상태를 예측하거나 식별하여 조기 발견 및 개입을 지원합니다. 생성 AI는 또한 새로운 약물 후보를 설계할 수 있으며, 이는 기존의 수동 설계 프로세스를 대체하여 개발 일정을 가속화하는 데 도움이 될 수 있습니다.
개인화된 의학과 예방적 건강 관리에 대한 매력과 선호도가 높아지는 것도 의료 분야에서 생성적 AI의 통합과 활용을 확대하는 주요 요인입니다. GenAI를 사용하여 개인의 데이터와 질병에서 특정 패턴을 분석하고 식별하면 개별화된 치료 전략과 접근 방식을 개발하는 데 도움이 됩니다. 개인화된 의학과 예방적 건강 관리 추세의 성장은 만성 질환의 유병률 증가와 조기 발견을 장려하고 질병 진단과 환자 치료, 모니터링 및 관리를 지원하기 위해 첨단 기술을 통합하는 데 의료 분야 전반에 걸쳐 집중하는 경향에 의해 크게 뒷받침됩니다. 또한 꾸준한 원격 진료 및 원격 환자 모니터링 추세는 의료 분야에서 AI 기반 솔루션과 기술의 도입을 촉진하는 데 도움이 됩니다. AI 기반 가상 건강 보조원, 챗봇 및 예측 분석 도구의 수용과 이러한 온라인 도구의 24시간 가용성은 의료 시장에서 생성적 AI의 성장을 계속 촉진할 것으로 예상되는 요인입니다.
2024년에서 2034년까지의 헬스케어 시장 규모(XNUMX억 달러)의 생성 인공지능(Gen AI)
AI(GPT)가 왔어요!!! 헬스케어 시장에서 생성형 인공지능(Gen AI)에 대해 질문하세요
헬스케어 시장 동인 및 추세에서 최고의 생성적 인공 지능(Gen AI)
- 최첨단 치료법 및 솔루션 개발: 생성적 AI는 진단 및 치료에 혁명을 일으켰을 뿐만 아니라, 의료 인력과 시설이 환자 치료, 관리 및 모니터링을 개선하도록 지원하여 환자 결과를 개선하고 제공되는 서비스에 가치를 더할 수 있도록 했습니다. 기술과 AI 기반 알고리즘 및 모델의 발전은 최첨단 기술과 솔루션의 혁신과 개발을 주도해 왔습니다. 의료 이미지를 분석하고 데이터 기반 통찰력을 추출하여 제공하여 환자 치료를 개선하고 운영 프로세스를 간소화하고 행동 건강 모니터링에 사용할 수 있는 기능은 의료 진단을 혁신하고 치료와 관리를 향상시켜 왔습니다. 생성적 AI는 또한 개인화된 치료 계획 개발을 돕고, 예측 분석, 예측 모델링, 질병 모니터링 및 평가를 지원하고, 예방 의료의 발전을 지원하고, 전반적인 의료 비용을 전반적으로 절감합니다.
- 정확성과 최적화된 치료 전략: 생성적 AI를 의료 분야에 통합하는 일은 환자 데이터 볼륨과 의료 데이터가 빠르게 증가하고 질병 유병률이 높아지고 효율적인 환자 진단, 치료, 관리 및 긍정적인 결과에 대한 필요성이 커지면서 다양한 중요한 애플리케이션에서 꾸준히 증가하고 있습니다. 대규모 데이터 세트, 환자별 데이터, 질병 패턴, 증상을 분석하고, 조기 질병 탐지를 지원하고, 개인화된 의학 및 치료에 대한 통찰력을 제공하며, 정확하고 빠른 통찰력과 솔루션을 제공하는 AI 기반 모델의 역량과 정확성으로 인해 채택과 통합이 증가하고 있습니다. 제공되는 이점은 의료 종사자가 진단 정확도를 개선하고, 최적화된 치료 전략을 수립하고, 의료 자원을 효율적으로 할당하고 활용할 수 있도록 하는 것입니다.
- 인적 오류 및 지출 감소: 생성적 AI는 반복적인 작업을 자동화하고, 관리 작업을 관리하고, 환자 데이터를 수동으로 입력할 필요성을 없애고, 건강 기록 검색에 대한 일정 및 문서화를 개선하고, 워크플로를 간소화하는 데 도움이 되며, 이 모든 것이 전체 운영 비용을 상당히 절감합니다. 반복적인 작업을 자동화하면 다른 중요한 작업과 운영적 요구 사항에 리소스를 확보하고, 지출을 줄이고, 프로세스를 가속화하고, 인적 오류의 가능성을 줄일 수 있습니다. 또한 예측 분석 플랫폼, 가상 건강 보조원 및 채팅봇을 사용할 수 있어 서비스에 가치가 더해지고, 환자가 24시간 연중무휴 서비스에 액세스할 수 있으며, 의료 시설에서 안정적인 지원 프레임워크를 지원합니다. 게다가 NLP 기반 대화형 EHR 솔루션을 통합하면 자연어로 특정 질문을 하여 관련 환자 정보를 수집할 수 있습니다.
- 조직 간 상호 운용성: GenAI와 고급 의료 분석 및 전자 건강 기록(EHR)을 통합하고 클라우드 컴퓨팅을 도입하면 더 광범위한 네트워크에서 의료 기관에 데이터와 의료 통찰력에 대한 향상된 성능과 접근성을 제공할 수 있습니다. 생성 AI는 EHR의 기능을 향상시키고 환자 기록, 임상 의사 결정 지원 및 임상의를 위한 조종사 경험의 상호 운용성을 가능하게 합니다. 또한 EHR 상호 운용성은 더 나은 워크플로와 모호성 감소를 가능하게 하며, EHR 시스템과 의료 기관 간의 적절한 데이터 전송을 가능하게 하여 의료 제공을 개선합니다.
헬스케어 시장의 생성 인공지능(Gen AI) 제약 요인 통찰력
- 데이터 프라이버시 및 상호 운용성에 대한 높은 비용: 민감한 환자 데이터의 공유와 침해 또는 무단 액세스 및 사용의 잠재적 위험은 의료 분야에서 생성적 AI 도입에 영향을 미치는 주요 문제입니다. 의료 시스템과 조직 간의 안전하고 보안이 유지되는 상호 운용성이 부족한 것도 주요 문제입니다. 이러한 솔루션을 기존 시스템에 통합하는 것도 과제이며, 의료 기관에 상당한 비용을 초래할 수 있습니다.
- 변화에 대한 저항과 규제 불확실성: 일부 의료 기관은 새로운 기술을 도입하고 기존 의료 관행 및 접근 방식에서 벗어나는 데 주저할 수 있습니다. 또한 지속적으로 진화하는 기술과 애플리케이션으로 인한 규제 불확실성과 의료 정책의 변화는 의료 분야에서 생성적 AI와 같은 솔루션의 도입에 부정적인 영향을 미칠 수 있습니다.
- 의료 분야에서 AI의 윤리적 의미: 인공 지능이나 기계의 의사 결정과 관련된 우려는 윤리적 우려와 고려 사항을 발생시킵니다. 치료 결정 및 권장 사항과 관련된 책임성, 투명성 및 공정성도 환자의 부정적 또는 긍정적 결과와 관련된 우려를 제기하는 주요 요인입니다. 이러한 요인은 채택에 큰 영향을 미칠 수 있습니다.
헬스케어 시장 기회에서의 생성형 인공지능(Gen AI)
- 영상 진단의 혁신: 진단 영상 및 분석에서 더 정확한 것에 대한 필요성은 이 부문의 선도적 기업이 이러한 필요성을 해결하기 위해 생성적 AI 기능을 통합하고 강화할 수 있는 기회를 제공할 수 있습니다. 의료 영상 및 분석의 정확성과 조기 질병 탐지 및 진단을 강화하면 기업은 고급 영상 기술 및 솔루션 제공을 확대하고 수익 흐름을 촉진할 수 있습니다.
- 텔레헬스 트렌드 활용: 원격 진료 서비스의 매력 증가와 의료 분야의 디지털 혁신을 촉진하는 데 중점을 두고, 보다 진보적이고 반응성이 뛰어나며 자연스러운 가상 건강 지원 및 채팅봇을 개발하면 원격 환자 모니터링 및 원격 진료 플랫폼에 대한 증가하는 요구에 부응할 수 있습니다.
- 약물 발견 및 R&D 협업: 기업들은 약물 발견에 있어 생성적 AI의 보다 간소화된 적용성에 집중할 수 있으며, 협업과 파트너십을 통해 제약 회사 간의 특정 요구 사항을 해결하는 데 집중하여 연구 개발 프로세스를 가속화하고 시장에 새로운 치료법을 출시하는 속도를 높일 수 있습니다.
헬스케어 시장 세분화에서의 생성형 인공지능(Gen AI):
기술 별 :
- 자연 언어 처리 (NLP)
- 깊은 학습
- 예측 분석
- 생성 적 적대 네트워크
- 변압기 신경망
구성 요소 별 :
- 산업/분야
- 제공 서비스
모달리티별:
- 본문
- 영상
- Video
응용 프로그램 별 :
- 진단 이미징
- 약 발견
- 정밀 의학
- 개인화된 치료 계획
- 가상 건강 도우미
- 봇봇
- 원격 환자 모니터링
최종 용도:
- 병원 및 진료소
- 제약 회사
- 의료 기기 제조업체
- 연구 기관
세그먼트 통찰력:
기술 부문 중에서 딥 러닝 부문은 예측 기간 동안 가장 큰 매출 점유율을 차지할 것으로 예상됩니다. 딥 러닝은 방대한 양의 비정형 데이터를 처리하고, 패턴을 식별하고, 매우 정교한 출력을 생성하는 능력으로 인해 생성 AI의 핵심 기술로 부상했습니다. 딥 러닝은 자연어 처리 및 이미지 생성에서 생성 기능을 향상시키는 것을 포함하여 여러 AI 혁신에서 매우 유능한 것으로 입증되고 있습니다. 헬스케어에서 엔터테인먼트에 이르기까지 산업 전반에 걸친 다재다능함과 텍스트 생성, 이미지 및 디지털 콘텐츠 생성 기능, 진단 및 고객 서비스에서의 사용 증가는 딥 러닝이 제공하는 혁신적 가능성 중 일부입니다. AI 모델에서 딥 러닝의 발전은 GPU 및 TPU와 같은 하드웨어와 소프트웨어 프레임워크의 발전으로 지원되어 AI 솔루션의 배포를 보다 확장 가능하고 효율적으로 만들고, 또한 부문 전반에 걸쳐 배포 및 광범위한 채택을 위한 추가 경로를 열어줍니다.
구성 요소 별 :
구성 요소 세그먼트 중에서 솔루션 세그먼트는 예측 기간 동안 매출 점유율 측면에서 우위를 점할 것으로 예상됩니다. 자동화 향상, 의사 결정 개선, 콘텐츠 생성과 같은 특정 요구 사항에 대한 다양한 비즈니스 및 부문에서 GenAI 솔루션 채택이 증가함에 따라 이 세그먼트의 성장이 계속 지원될 것으로 예상됩니다. 이러한 솔루션은 종종 생성형 AI 기반 챗봇, 이미지 생성 도구, 자동화된 데이터 분석 플랫폼과 같은 주요 비즈니스 과제를 해결하는 독립형 제품 또는 통합 시스템으로 패키징됩니다. AI 도구는 또한 의료, 제조, 마케팅을 포함한 산업 전반에서 워크플로를 간소화하고 생산성을 개선하는 데 활용되고 있습니다.
모달리티별:
모달리티 세그먼트 중에서 텍스트 생성 세그먼트는 예측 기간 동안 가장 큰 수익 점유율을 차지할 것으로 예상됩니다. 언어 번역, 챗봇 개발, 자동화된 콘텐츠 생성과 같은 텍스트 기반 애플리케이션의 채택은 상당한 경사를 기록하고 있습니다. 커뮤니케이션 및 콘텐츠 생성을 위한 AI 기반 플랫폼은 GPT와 같은 대규모 언어 모델에서 상당한 성공을 거두었으며, 고객 서비스, 마케팅, 교육 및 콘텐츠 생성에 광범위한 응용 분야가 있는 인간과 유사한 텍스트를 생성할 수 있는 역량을 입증했습니다. 텍스트 생성 세그먼트의 성장도 더 많은 기업이 이러한 도구를 채택하여 대화형 AI를 통해 콘텐츠 생성을 확장하고 사용자 경험을 향상함에 따라 계속해서 빠르게 경사를 이룰 것으로 예상됩니다.
응용 프로그램 별 :
애플리케이션 세그먼트 중에서 챗봇 세그먼트는 예측 기간 동안 가장 큰 매출 점유율을 차지할 것으로 예상됩니다. 생성적 AI로 구동되는 챗봇은 특히 고객 서비스, 전자 상거래 및 의료 분야에서 여러 부문과 산업에 빠르게 통합되고 있습니다. AI 기반 챗봇은 고객 문의 처리, 응답 시간 단축 및 개인화된 상호 작용 제공에 매우 효과적인 것으로 입증되고 있습니다. 또한 24시간 연중무휴로 작동하고 다국어 지원을 제공하며 점점 더 복잡해지는 대화를 처리할 수 있는 이러한 솔루션은 운영 비용을 절감하면서 고객 경험을 개선하려는 기업에 없어서는 안 될 솔루션입니다. 또한 NLP 및 AI 기반 대화 시스템의 급속한 발전으로 챗봇의 기능이 더욱 향상되어 보다 자연스럽고 매력적인 사용자 상호 작용이 가능해질 것으로 예상됩니다.


보고 범위 및 결과물
- 실시간 데이터 업데이트:
- 경쟁사 벤치마킹
- 시장 동향 히트맵
- 맞춤형 연구 쿼리
- 시장 심리 분석
- 인구통계 및 지리학적 통찰력
지금 액세스하기
프리미엄 데이터 인텔 도구를 사용하여 실시간으로 시장 동향을 추적하고 경쟁사보다 한 수 앞선다. 밴티지 포인트
최종 용도:
예측 기간 동안 최종 사용 세그먼트 중에서 병원 및 진료소 세그먼트가 가장 큰 매출 점유율을 차지할 것으로 예상됩니다. 이는 의료 산업 전반에 걸친 상당한 디지털 혁신에 기인할 수 있으며, 생성적 AI는 진단 정확도 향상, 환자 치료 개인화, 운영 효율성 개선에 중요한 역할을 합니다. 의료 분야에서 이미지 분석, 예측 진단, 개인화된 치료 계획을 위한 생성적 AI 챗봇 및 가상 비서, ML, 딥 러닝, 데이터 분석의 의존성과 통합이 꾸준히 증가하고 있습니다. 대용량 데이터 세트를 빠르고 정확하게 분석하는 능력은 빠르고 정확한 진단이 중요한 방사선학, 병리학 및 유전체학에서 특히 중요합니다. 또한, 특히 COVID-19 팬데믹 동안 상당한 중요성과 사용을 얻은 원격 환자 모니터링 및 텔레헬스 솔루션에서 AI 사용이 증가함에 따라 의료 시설과 병원 및 진료소에서 생성적 AI 도입이 가속화되었습니다.
지역 및 국가
북아메리카
- United States
- Canada
- 맥시코
유럽
- 독일
- 영국
- 프랑스
- 이탈리아
- 스페인
- 유럽의 나머지
아시아 태평양
- 중국
- 일본
- 인도
아시아 태평양 지역의 나머지
- 라틴 아메리카
- 브라질
- Argentina
나머지 라틴 아메리카
- 중동 및 아프리카
- 사우디 아라비아
- 남아프리카
- 아랍 에미리트
- 이스라엘
- MEA의 나머지
헬스케어 시장 지역적 환경에서의 생성적 인공 지능(Gen AI):
지역 시장 중에서 북미는 예측 기간 동안 가장 큰 수익 점유율을 차지할 것으로 예상됩니다. 기술적 진보와 혁신, 생성적 AI 기반 솔루션의 높은 채택률, 현대적이고 정교한 의료 인프라의 존재, 의료 및 의료 부문에 대한 높은 투자, 유리한 규제 환경, 미국의 대규모 환자 풀은 이 지역 시장 성장을 뒷받침하는 핵심 요인입니다.
유럽의 의료 시장에서 생성적 AI는 꾸준한 수익 성장률을 기록하고 있으며, 독일과 영국에서 이러한 솔루션의 채택 및 통합이 상당히 높았습니다. 또한 현대적인 의료 시설이 있고 인구가 급속히 고령화되고 있으며 증가하는 의료적 요구를 해결하기 위한 고급 의료 솔루션에 대한 필요성이 높아지고 있습니다.
아시아 태평양 지역의 헬스케어 시장에서 생성적 AI는 예측 기간 동안 꾸준하고 빠른 성장률을 기록할 것으로 예상됩니다. 현재 중국과 일본은 헬스케어 부문에서 생성적 AI 솔루션 도입과 관련하여 이 지역 국가 중 선두를 달리고 있습니다. 그러나 헬스케어 부문의 꾸준한 디지털화 추세, 정밀 의학에 대한 집중 증가, 개인화된 헬스케어 추세의 추진력 증가, 헬스케어 인프라 및 지출 개선과 같은 요인이 예측 기간 동안 아시아 태평양 시장의 성장을 견인할 것으로 예상됩니다.
헬스케어 시장에서의 생성형 인공지능(Gen AI) 경쟁 구도:
회사 목록:
- IBM Watson
- Google LLC(알파벳 Inc.)
- 마이크로 소프트
- 엔비디아
- 존슨 앤 존슨
- 지멘스 헬시니어스 AG
- 제너럴 일렉트릭 컴퍼니(GE 헬스케어)
- 필립스 헬스 케어
- 메드 트로닉 PLC
- 에픽 시스템즈 코퍼레이션
- 템퍼스랩스 주식회사
- 패스AI
- 에이닥 메디컬 유한회사
- (주)아테리스
- 큐어메트릭스
경쟁 구도:
글로벌 Generative-Artificial Intelligence(GenAI) 헬스케어 시장에서 경쟁 환경은 기존 기업과 신규 진입 기업이 더욱 진보된 기능과 역량을 갖춘 솔루션과 도구를 개발하고 도입하기 위한 지속적인 기술 경쟁에 참여하면서 치열해졌습니다. Generative AI는 더욱 향상되고 정확한 진단 기능과 약물 발견, 영상, 질병 진단, 약물 개발 및 합성 데이터 생성 등을 위해 점점 더 훈련되고 탐구되고 있습니다.
선도적인 기업들도 생성적 AI 혁신에 참여하고 있으며, 헬스케어 애플리케이션을 위한 보다 효율적이고 진보된 솔루션을 개발하는 것 외에도 워크플로 최적화와 환자 치료 및 결과 개선을 위한 역량에 집중하고 있습니다. 다른 전략으로는 연구 기관 및 센터, 병원과의 협업 및 파트너십, 기존 포트폴리오에 보다 진보된 기술을 통합하고, 시장 도달 범위를 확대하고, 수익을 늘리려는 의도로 합병 및 인수가 있습니다.
최근 개발
- 11년 2024월 XNUMX일: Microsoft는 의료 혁신을 위한 Microsoft Cloud에서 여러 가지 인공 지능 향상 기능을 공개한다고 발표했습니다. 여기에는 Azure AI Studio의 새로운 의료 AI 모델, Microsoft Fabric의 새로운 의료 데이터 기능, Copilot Studio의 개발자 도구가 포함됩니다. 회사의 입력에 따르면 혁신에는 EHR의 데이터를 결합하여 포괄적인 통찰력을 생성하고 사용 사례와 임상 영상, Medicare & Medicaid 서비스 청구, 건강의 사회적 결정 요인 등을 지원하는 AI 기반 기능이 포함됩니다. 주요 새로운 기능은 대화형 데이터 통합 및 생성형 AI 음성 지원 도구인 Nuance의 DAX Copilot으로, XNUMX년 동안 제공되었지만 최근 몇 달 동안 인기를 얻었습니다.
- 13년 2024월 2023일: Cognizant는 Google Cloud와 협력하여 고비용 워크플로를 타겟으로 하는 의료 전문 생성 AI 솔루션을 출시하여 효율성, 정확성 및 전반적인 의료 제공을 개선했습니다. XNUMX년 XNUMX월에 발표된 확대된 파트너십의 일환으로 Cognizant는 이제 Google Cloud의 생성 AI 기술에서 최초의 의료 대규모 언어 모델(LLM) 솔루션 세트를 출시했습니다. 여기에는 Vertex AI 플랫폼과 Gemini 모델이 포함됩니다. 발표에 따르면 이러한 새로운 생성 AI 솔루션과 도구는 의료 행정 프로세스를 재설계하고 경험을 개선할 수 있습니다. 복잡성과 의료 시스템에 대한 요구가 증가하는 생태계에 이러한 고도로 조정된 모델을 통합하면 행정 프로세스를 간소화하고 운영 속도를 가속화하는 동시에 회원에게 제공되는 치료 및 서비스의 질을 크게 개선할 수 있습니다.
자주 묻는 질문:
질문: 2024년 글로벌 헬스케어 분야 생성 인공지능(AI) 시장 규모는 어떻게 되며, 2034년 전망은 어떻습니까?
A: 글로벌 헬스케어 생성 인공지능(AI) 시장 규모는 1.8년 2024억 달러로 추산됐으며 34.61년에는 2034억 XNUMX천만 달러에 도달할 것으로 예상됩니다.
2023년에 어느 지역 시장이 가장 큰 수익 점유율을 차지했으며, 예측 기간 동안 예상되는 추세는 무엇입니까?
A: 북미는 2023년에 가장 큰 매출 점유율을 차지했으며, 예측 기간 동안에도 선두를 유지할 것으로 예상됩니다.
질문: 글로벌 헬스케어 분야 생성형 인공지능(AI) 시장 보고서에 포함되는 주요 회사는 무엇입니까?
A: 시장 보고서에 포함된 주요 기업은 IBM Watson, Google LLC(Alphabet Inc.), Microsoft Corporation, NVIDIA Corporation, Johnson & Johnson, Siemens Healthineers AG, General Electric Company(GE Healthcare), Philips Healthcare, Medtronic PLC, Epic Systems Corporation, Tempus Labs Inc., PathAI, Aidoc Medical Ltd., Arterys Inc., CureMetrix입니다.
질문: 예측 기간 동안 헬스케어 분야에서 글로벌 생성형 인공지능(AI) 시장의 예상 수익 CAGR은 얼마입니까?
답변: 글로벌 의료 분야의 생성형 인공지능(AI) 시장은 34.4년부터 2025년까지 2034%의 CAGR을 기록할 것으로 예상됩니다.
질문: 의료 시장에서 생성형 인공지능(AI)의 수익 성장을 촉진하는 주요 요인은 무엇입니까?
A: 시장 수익 성장을 견인하는 주요 요인으로는 질병 유병률 증가, 의료 데이터 양 확대, 데이터 분석 필요성, 신약 발견, 질병 진단, 개인화된 의료 분야의 이니셔티브 증가, 의료용 챗봇 수요, 가상 건강 보조원, 맞춤형 치료 계획 의료 시뮬레이션, 향상되고 정확한 질병 진단, 고객 서비스에 대한 genAI 도입 등이 있습니다.

FAQ
자주하는 질문과 대답
수익 측면에서 의료 분야에서 생성형 인공지능(Gen AI)에 대한 글로벌 수요는 얼마입니까?
-
1.8년 전 세계 의료 분야의 생성형 인공지능(Gen AI) 시장 규모는 2024억 달러에 달했으며, 34.61년에는 2034%의 CAGR로 성장하여 34.4억 달러에 도달할 것으로 예상됩니다.
어느 눈에 띄는 선수들이다 마트에서?
-
시장의 주요 기업으로는 IBM Watson, Google LLC(Alphabet Inc.), Microsoft Corporation, NVIDIA Corporation, Johnson & Johnson, Siemens Healthineers AG, General Electric Company(GE Healthcare), Philips Healthcare, Medtronic PLC, Epic Systems Corporation, Tempus Labs Inc., PathAI, Aidoc Medical Ltd., Arterys Inc., CureMetrix 등이 있습니다.
CAGR은 얼마입니까? 예측 기간 내에 시장이 성장할 것으로 예상됩니까?
-
시장은 CAGR로 성장할 것으로 예상됩니다. 34.4% 2025년부터 2034년 사이.
무엇인가 추진 요인 시장의 성장을 촉진합니다.
-
의료 분야에서 생성형 인공지능(Gen AI)을 주도하는 요인은 다음과 같습니다.
어느 을 차지한 지역 시장에서 가장 큰 점유율은?
-
북미는 2024년에 의료 분야에서 생성형 인공지능(Gen AI)을 선도하는 지역이 될 것입니다.