
ヘルスケア市場における生成型人工知能(Gen AI)
ヘルスケア市場における生成型人工知能(Gen AI) - グローバル産業評価と予測
対象セグメント
による テクノロジー 自然言語処理 (NLP)、ディープラーニング、予測分析、敵対的生成ネットワーク、トランスフォーマー ニューラル ネットワーク
による 成分 ソリューション、サービス
モダリティ別 テキスト、画像、ビデオ
による 応用 診断画像、創薬、精密医療、個別治療計画、仮想健康アシスタント、チャットボット、遠隔患者モニタリング
最終用途別 病院・診療所、製薬会社、医療機器メーカー、研究機関
による 地域 北米、ヨーロッパ、アジア太平洋、ラテンアメリカ、中東、アフリカ
Snapshot
![]() |
2024 |
![]() |
2025 - 2034 |
![]() |
2019 - 2023 |
![]() |
1.8億米ドル |
![]() |
34.61億米ドル |
![]() |
34.4% |
![]() |
アジア太平洋地域 |
![]() |
北米大陸 |
カスタマイズが可能
セグメント間の市場規模と 分析 言及されたセグメントについて
追加の会社概要 (最大 5 つ) と コストがかからない)
追加の国 (以下を除く) 言及された国)
国/地域別のレポート
市場戦略に進む
地域特有の市場動向
地域レベルの市場シェア
輸出入分析
生産分析
その他 リクエスト カスタマイズ に話す アナリスト

世界の透析装置市場規模は1,4年に2023億米ドルに達し、 1.8年には2024億XNUMX万米ドル。 市場規模は 34.61 年までに 2034 億米ドル収益を登録する 34.4% 予測期間 (2025 年から 2034 年) にわたって。
プレミアムな洞察:
COVID-19パンデミック以降、ヘルスケア市場における生成型人工知能(AI)の成長は急速に進み、ヘルスケアにおけるより高性能で高度なソリューションが求められています。ヘルスケアにおける生成型人工知能(生成型AIやGenAIとも呼ばれる)の採用と統合を推進する主な要因は、構造化されていないヘルスケアデータの急増と増大する量、そしてこれらのデータセットの迅速なフィルタリングと分析の必要性です。生成型AIを活用したソリューションは、新薬の発見、病気の診断とスクリーニング、副作用の予測、薬の再利用、医療チャットボット、仮想健康アシスタント、カスタマイズされた治療計画の医療シミュレーション、顧客サービスなどに使用されています。
自然言語処理 (NLP)、ディープラーニング、予測分析、生成的敵対ネットワーク、トランスフォーマー ニューラル ネットワークの統合により、生成 AI に、大規模なデータセットから分析、抽出、有意義な洞察を提供するための強化された機能が、比類のない速度と精度で備わるようになります。
ジェネレーティブ AI は急速に普及し続けており、病院や診療所、製薬会社、医療機器メーカー、研究機関の業務にますます統合されています。診断用画像、創薬、精密医療、個別治療計画、仮想健康アシスタント、チャットボット、遠隔患者モニタリングにおいて非常に効率的であることが証明されており、医療提供において人間の労働力と比較して比較的コスト効率に優れています。また、反復タスクの自動化、ワークフローの最適化、全体的な運用コストの最小化により、正確性とスピードを実現します。ヘルスケアにおけるジェネレーティブ AI の主な用途は、医療画像内の臓器や異常を自動的にセグメント化することです。これは正確であるだけでなく、医療従事者の時間を節約します。病理学では、ジェネレーティブ AI が医療画像のパターンを分析して病理学的状態を予測または特定し、早期発見と介入をサポートします。ジェネレーティブ AI は新薬候補も設計できるため、従来の手動設計プロセスに代わることで開発タイムラインを加速できます。
パーソナライズ医療と予防医療への関心と選好の高まりも、医療における生成AIの統合と使用の増加を促進する主な要因です。個人のデータと病気の特定のパターンを分析および識別するためのGenAIの使用は、個別化された治療戦略とアプローチの開発に役立っています。パーソナライズ医療と予防医療のトレンドの成長は、慢性疾患の有病率の上昇と、早期発見を促進し、病気の診断と患者のケア、監視、管理を支援する高度なテクノロジーを統合することに医療分野全体で重点が置かれていることでも大きく支えられています。さらに、着実な遠隔医療と遠隔患者監視のトレンドは、医療分野でのAIを活用したソリューションとテクノロジーの採用を促進しています。AIベースの仮想健康アシスタント、チャットボット、予測分析ツールの受け入れ、およびこれらのオンラインツールの24時間利用可能性は、医療市場における生成AIの成長を継続的に促進すると予想される要因です。
ヘルスケアにおける生成型人工知能 (Gen AI) の市場規模、2024 年~ 2034 年 (XNUMX 億米ドル)
AI (GPT) が登場しました!!! ヘルスケア市場における生成型人工知能 (Gen AI) について質問する
ヘルスケア市場における主要な生成型人工知能 (Gen AI) の推進要因とトレンド:
- 最先端の治療法とソリューションの開発: ジェネレーティブ AI は診断と治療に革命をもたらし、医療従事者と医療施設が患者のケア、管理、モニタリングを強化するのを支援してきました。これらはすべて、患者の転帰を改善し、提供されるサービスへの付加価値を可能にしてきました。テクノロジーの進歩と AI を活用したアルゴリズムとモデルは、最先端のテクノロジーとソリューションの革新と開発を推進してきました。医療画像を分析し、データに基づく洞察を抽出して提供することで、患者ケアを強化し、運用プロセスを合理化し、行動健康モニタリングで使用する機能は、医療診断を変革し、ケアと治療を強化してきました。ジェネレーティブ AI は、パーソナライズされた治療計画の開発、予測分析、予測モデリング、疾患のモニタリングと評価の支援、予防医療の進歩のサポート、および全体的な医療費の削減にも役立っています。
- 正確性と最適化された治療戦略: 医療における生成 AI の統合は、患者データ量と医療データの急増、病気の蔓延の増加、効率的な患者診断、治療、ケア、良好な結果の必要性により、さまざまな重要なアプリケーションで着実に増加しています。大規模なデータセット、患者固有のデータ、病気のパターン、症状を分析し、病気の早期発見を支援し、パーソナライズされた医療と治療に関する洞察を提供し、正確で迅速な洞察とソリューションを提供する AI 搭載モデルの機能と精度により、採用と統合が増加しています。提供される利点により、医療従事者は診断精度を向上させ、最適化された治療戦略を作成し、医療リソースを効率的に割り当てて活用することができます。
- 人的エラーと支出の削減: ジェネレーティブ AI は、反復タスクの自動化、管理タスクの管理、患者データの手動入力の必要性の排除、健康記録検索のスケジュールと文書化の強化、ワークフローの合理化に役立ち、これらすべてが全体的な運用コストを大幅に削減しました。反復タスクを自動化すると、他の重要なタスクや運用ニーズにリソースを解放し、支出を削減し、プロセスを高速化し、人的エラーの可能性を減らすことができます。また、予測分析プラットフォーム、仮想ヘルス アシスタント、チャットボットを利用できることで、サービスの価値が高まり、患者は 24 時間 7 日のサービスにアクセスでき、医療施設で信頼性の高いサポート フレームワークがサポートされます。さらに、NLP を活用した会話型 EHR ソリューションを統合すると、自然言語で特定の質問をすることで、関連する患者情報を収集できます。
- 組織間の相互運用性: GenAI と高度な医療分析および電子医療記録 (EHR) の統合、およびクラウド コンピューティングの採用により、より広範なネットワークにわたる医療機関で、データと医療情報へのパフォーマンスとアクセス性が向上します。Generative AI は EHR の機能を強化し、患者記録の相互運用性、臨床意思決定サポート、臨床医の副操縦士エクスペリエンスを実現します。また、EHR の相互運用性により、ワークフローが改善され、あいまいさが軽減され、EHR システムと医療機関間で適切なデータ転送が可能になるため、医療の提供が向上します。
ヘルスケア市場における生成型人工知能(Gen AI)の抑制要因に関する洞察
- データのプライバシーと相互運用性のための高コスト: 機密性の高い患者のデータの共有や、侵害や不正アクセスおよび使用の潜在的なリスクは、医療分野での生成 AI の導入に影響を与える大きな懸念事項です。医療システムと組織間の安全で確実な相互運用性の欠如も重要な懸念事項です。これらのソリューションを既存のシステムに統合することも課題であり、医療組織にとって多大なコストがかかる可能性があります。
- 変化への抵抗と規制の不確実性: 医療機関の中には、新しいテクノロジーを導入し、従来の医療の実践やアプローチから転換することに躊躇するところもあります。また、テクノロジーやアプリケーションが絶えず進化していることによる規制の不確実性や、医療政策の変更は、医療における生成 AI などのソリューションの導入に悪影響を及ぼす可能性があります。
- ヘルスケアにおける AI の倫理的影響: 人工知能や機械による意思決定に関する懸念は、倫理的な懸念や考慮を引き起こします。治療の決定や推奨に関する説明責任、透明性、公平性も、患者の否定的または肯定的な結果に関連する懸念を引き起こす主な要因です。これらの要因は、採用に大きな影響を与える可能性があります。
ヘルスケア市場における生成型人工知能(Gen AI)の機会
- 画像診断におけるイノベーション: 診断用画像と分析の精度向上のニーズは、この分野の大手企業にとって、生成 AI 機能を統合および強化してこのニーズに対応する機会となります。医療用画像と分析の精度、および病気の早期検出と診断を向上させることで、企業は高度な画像技術とソリューションの提供を拡大し、収益源を増やすことができます。
- 遠隔医療のトレンドを活用する: より高度で応答性に優れ、自然な音声の仮想ヘルスアシスタントやチャットボットの開発を通じて、遠隔医療サービスの魅力の高まりと医療におけるデジタル変革の推進力を活用することで、遠隔患者モニタリングや遠隔医療プラットフォームの高まるニーズに対応できるようになります。
- 創薬と研究開発のコラボレーション: 企業は、創薬における生成 AI のより合理的な適用に重点を置くことができるほか、コラボレーションやパートナーシップを通じて製薬会社間の特定のニーズに対応することにも重点を置き、研究開発プロセスを加速し、市場への新しい治療法の導入を加速することができます。
ヘルスケア市場セグメンテーションにおける生成型人工知能 (Gen AI):
テクノロジー別
- 自然言語処理(NLP)
- 深層学習
- 予測分析
- 生成的敵対的ネットワーク
- トランスフォーマー ニューラル ネットワーク
コンポーネント別:
- ソリューション
- 事業紹介
モダリティ別:
- テキスト
- 画像
- 動画
アプリケーションによって:
- 診断イメージング
- 創薬
- 精密医療
- 個別治療計画
- バーチャルヘルスアシスタント
- チャットボット
- リモート患者モニタリング
最終用途別:
- 病院と診療所
- 製薬会社
- 医療機器メーカー
- 研究機関
セグメント分析:
テクノロジーセグメントの中で、ディープラーニングセグメントは、予測期間中に最大の収益シェアを占めると予想されています。ディープラーニングは、膨大な量の非構造化データを処理し、パターンを識別し、高度に洗練された出力を生成する能力により、生成AIの主要テクノロジーとして浮上しています。ディープラーニングは、自然言語処理や画像作成における生成能力の強化など、多くのAIイノベーションにおいて非常に有能であることが証明されています。ヘルスケアからエンターテイメントに至るまでの業界にわたる汎用性、テキストの生成、画像やデジタルコンテンツの作成能力、診断や顧客サービスでの使用の増加は、ディープラーニングが提供する変革の可能性の一部です。AIモデルにおけるディープラーニングの進歩は、GPUやTPUなどのハードウェアやソフトウェアフレームワークの進歩によってもサポートされており、AIソリューションの展開をよりスケーラブルかつ効率的にし、セクター間での展開とより広範な採用のさらなる道を開きます。
コンポーネント別:
コンポーネントセグメントのうち、ソリューションセグメントは予測期間中の収益シェアの点で優位に立つと予想されます。自動化の強化、意思決定の改善、コンテンツの生成など、特定のニーズに対応するために、さまざまなビジネスやセクターで GenAI ソリューションの採用が増えており、このセグメントの成長を継続的にサポートすると予想されます。これらのソリューションは、多くの場合、生成 AI 搭載チャットボット、画像生成ツール、自動データ分析プラットフォームなど、主要なビジネス課題に対処するスタンドアロン製品または統合システムとしてパッケージ化されています。AI ツールは、医療、製造、マーケティングなどの業界全体でワークフローを合理化し、生産性を向上させるためにも注目を集めています。
モダリティ別:
モダリティセグメントの中で、テキスト生成セグメントは予測期間中に最大の収益シェアを占めると予想されています。言語翻訳、チャットボット開発、自動コンテンツ作成などのテキストベースのアプリケーションの採用は、大幅な増加を記録しています。コミュニケーションとコンテンツ生成のためのAI搭載プラットフォームは、GPTなどの大規模な言語モデルで大きな成功を収めており、人間のようなテキストを生成する能力を証明しており、顧客サービス、マーケティング、教育、コンテンツ生成など、幅広い用途があります。より多くの企業がこれらのツールを採用してコンテンツ作成を拡大し、会話型AIを通じてユーザーエクスペリエンスを向上させるため、テキスト生成セグメントの成長も急速に増加し続けると予想されます。
アプリケーションによって:
アプリケーションセグメントの中で、チャットボットセグメントは予測期間中に最大の収益シェアを占めると予想されています。生成AIを搭載したチャットボットは、特にカスタマーサービス、eコマース、ヘルスケアの分野で、セクターや業界を超えて急速に統合されています。AI駆動型チャットボットは、顧客からの問い合わせの処理、応答時間の短縮、パーソナライズされたインタラクションの提供に非常に効果的であることが証明されています。また、24時間7日機能し、多言語サポートを提供し、ますます複雑化する会話を処理する能力により、これらのソリューションは、運用コストを削減しながら顧客体験を向上させることを目指す企業にとって不可欠なものとなっています。さらに、NLPとAI駆動型対話システムの急速な進歩により、チャットボットの機能がさらに強化され、より自然で魅力的なユーザーインタラクションが可能になると予想されています。


レポートの対象範囲と成果物
- リアルタイムのデータ更新:
- 競合他社のベンチマーク
- 市場動向ヒートマップ
- カスタムリサーチクエリ
- 市場センチメント分析
- 人口統計および地理的洞察
今すぐアクセスする
プレミアム データ インテル ツールを使用して、市場のトレンドをリアルタイムで追跡し、ライバルを出し抜きます。 バンテージ·ポイント
最終用途別:
予測期間中の最終用途セグメントのうち、病院および診療所セグメントが最大の収益シェアを占めると予想されています。これは、医療業界全体での大幅なデジタル変革に起因しており、生成AIは診断精度の向上、患者ケアのパーソナライズ、運用効率の改善に重要な役割を果たしています。医療分野では、画像分析、予測診断、パーソナライズされた治療計画のための生成AIチャットボットとバーチャルアシスタント、ML、ディープラーニング、データ分析への依存と統合が着実に増加しています。大規模なデータセットを迅速かつ正確に分析する能力は、迅速かつ正確な診断が不可欠な放射線学、病理学、ゲノミクスにおいて特に貴重です。さらに、COVID-19パンデミック中に特に重要性と使用が高まった遠隔患者モニタリングおよび遠隔医療ソリューションにおけるAIの使用の増加は、医療施設、病院、診療所での生成AIの採用を加速させるのに役立っています。
地域と国
北米大陸
- 米国
- 近日発売予定
- メキシコ
欧州
- ドイツ
- イギリス
- フランス
- イタリア
- スペイン
- ヨーロッパの残り
アジア太平洋地域
- 中国
- 日本
- インド
アジア太平洋地域の残りの部分
- ラテンアメリカ
- ブラジル
- アルゼンチン
ラテンアメリカの他の地域
- 中東・アフリカ
- サウジアラビア
- 南アフリカ共和国
- アラブ首長国連邦
- イスラエル
- MEAの残り
ヘルスケア市場における生成型人工知能 (Gen AI) の地域的展望:
地域市場の中で、北米は予測期間中、引き続き最大の収益シェアを占めると予想されます。技術の進歩と革新、AIを活用した生成ソリューションの採用率の高さ、現代的で洗練された医療インフラの存在、医療および医療分野への多額の投資、好ましい規制環境、および米国の大規模な患者プールは、この地域の市場の成長を支える主な要因です。
欧州のヘルスケアにおける生成型 AI 市場も着実な収益成長率を記録しており、近代的なヘルスケア施設の存在や人口の急速な高齢化、高まる医療ニーズに対応するための高度なヘルスケア ソリューションの必要性などにより、ドイツと英国ではこれらのソリューションの採用と統合が著しく進んでいます。
アジア太平洋地域のヘルスケアにおける生成AI市場は、予測期間中に着実かつ急速な成長率を記録すると予想されています。現在、ヘルスケア分野での生成AIソリューションの採用に関しては、中国と日本がこの地域の国々の中でリードしています。しかし、ヘルスケア分野における着実なデジタル化の傾向、精密医療への注目度の高まり、パーソナライズされたヘルスケアの傾向の勢いの高まり、ヘルスケアのインフラストラクチャと支出の改善などの要因が、予測期間中のアジア太平洋市場の成長を牽引すると予想されます。
ヘルスケア市場における生成型人工知能(Gen AI) 競争力のある風景:
企業リスト:
- IBM Watson
- Google LLC (Alphabet Inc.)
- マイクロソフト
- エヌビディアコーポレーション
- ジョンソン&ジョンソン
- シーメンス ヘルスニアーズ AG
- ゼネラル・エレクトリック・カンパニー(GEヘルスケア)
- フィリップスヘルスケア
- メドトロニックPLC
- Epic Systems Corporation
- テンパスラボ株式会社
- パスAI
- アイドックメディカル株式会社
- 株式会社アルテリス
- キュアメトリクス
競争力のある風景:
ヘルスケア市場における世界的な生成型人工知能 (GenAI) の競争環境は熾烈になっており、既存の企業と新規参入企業は、より高度な機能と性能を備えたソリューションとツールの開発と導入に向けて、継続的な技術競争を繰り広げています。生成型 AI は、より強化された正確な診断能力、創薬、イメージング、疾患診断、医薬品開発、合成データ生成などのために、ますますトレーニングと研究が進められています。
大手企業は、生成 AI のイノベーションにも取り組んでおり、医療アプリケーション向けのより効率的で高度なソリューションの開発に加えて、ワークフローを最適化し、患者のケアと結果を向上させる機能にも注力しています。その他の戦略には、研究機関やセンター、病院とのコラボレーションやパートナーシップ、既存のポートフォリオに高度なテクノロジーを統合し、市場範囲を拡大し、収益を向上させることを目的とした合併や買収などがあります。
最近の開発
- 11 年 2024 月 XNUMX 日: マイクロソフトは、ヘルスケア イノベーションのための Microsoft Cloud の人工知能強化機能をいくつか発表すると発表しました。これには、Azure AI Studio の新しいヘルスケア AI モデル、Microsoft Fabric の新しいヘルスケア データ機能、Copilot Studio の開発者ツールが含まれます。同社からの情報によると、イノベーションには、EHR のデータを組み合わせて包括的な洞察を生成し、ユース ケースや臨床画像、メディケアおよびメディケイド サービスの請求、健康の社会的決定要因などをサポートする AI 駆動機能が含まれます。重要な新機能は、会話型データ統合と生成 AI 音声対応ツールである Nuance の DAX Copilot です。これは XNUMX 年前から提供されていますが、ここ数か月で人気が高まっています。
- 13 年 2024 月 2023 日: Cognizant は Google Cloud と提携して、高コストのワークフローをターゲットにし、効率、精度、および全体的な医療提供を強化する医療固有の生成 AI ソリューションを開始しました。XNUMX 年 XNUMX 月に発表された拡大されたパートナーシップの一環として、Cognizant は Google Cloud の生成 AI テクノロジー上で最初の医療大規模言語モデル (LLM) ソリューション セットを開始しました。これには、Vertex AI プラットフォームと Gemini モデルが含まれます。発表によると、これらの新しい生成 AI ソリューションとツールは、医療管理プロセスを再設計し、エクスペリエンスを向上させることができます。医療システムに対する複雑さと要求が増大するエコシステムにこれらの高度に調整されたモデルを統合することで、管理プロセスが合理化され、運用速度が加速するとともに、メンバーに提供されるケアとサービスの質が大幅に向上します。
よくある質問:
Q: 2024 年のヘルスケアにおける生成型人工知能 (AI) の市場規模はどれくらいですか? また、2034 年の予測はどうなっていますか?
A: ヘルスケアにおける生成型人工知能(AI)の世界市場規模は、1.8年には2024億ドルと推定され、34.61年には2034億XNUMX万ドルに達すると予想されています。
2023 年に最大の収益シェアを占めたのはどの地域市場ですか。また、予測期間中の予想される傾向は何ですか。
A: 北米は2023年に最大の収益シェアを占め、予測期間を通じて引き続きそのリードを維持すると予想されます。
Q: ヘルスケア市場における生成型人工知能 (AI) の世界的レポートに含まれる主要企業はどれですか?
A: 市場レポートの主要企業は、IBM Watson、Google LLC (Alphabet Inc.)、Microsoft Corporation、NVIDIA Corporation、Johnson & Johnson、Siemens Healthineers AG、General Electric Company (GE Healthcare)、Philips Healthcare、Medtronic PLC、Epic Systems Corporation、Tempus Labs Inc.、PathAI、Aidoc Medical Ltd.、Arterys Inc.、CureMetrixです。
Q: 予測期間中のヘルスケア市場における世界の生成型人工知能 (AI) の予測収益 CAGR はどれくらいですか?
A: ヘルスケア市場における世界の生成型人工知能 (AI) は、34.4 年から 2025 年の間に 2034% の CAGR を記録すると予想されています。
Q: ヘルスケア市場における生成型人工知能 (AI) の収益成長を促進する主な要因は何ですか?
A: 市場収益の成長を牽引する主な要因としては、病気の蔓延の増加、医療データ量の拡大、データ分析の必要性、新薬発見、病気の診断、個別化医療への取り組みの増加、医療チャットボットの需要、仮想健康アシスタント、カスタマイズされた治療計画の医療シミュレーション、強化された正確な病気診断、顧客サービスにおける genAI の採用などが挙げられます。

Q&A
よくある質問
収益の観点から見たヘルスケアにおける生成型人工知能 (Gen AI) の世界的な需要はどの程度ですか?
-
ヘルスケア分野における世界の生成型人工知能(Gen AI)は、1.8年に2024億米ドルの価値があり、CAGR 34.61%で成長して2034年には34.4億米ドルに達すると予想されています。
どれの 著名な選手たちです 市場で?
-
この市場の主要プレーヤーとしては、IBM Watson、Google LLC (Alphabet Inc.)、Microsoft Corporation、NVIDIA Corporation、Johnson & Johnson、Siemens Healthineers AG、General Electric Company (GE Healthcare)、Philips Healthcare、Medtronic PLC、Epic Systems Corporation、Tempus Labs Inc.、PathAI、Aidoc Medical Ltd.、Arterys Inc.、CureMetrix などが挙げられます。
CAGR とは 市場は予測期間内に成長すると予測されますか?
-
市場は CAGR で成長するプロジェクトです 34.4% 2025 年から 2034 年まで。
とは何ですか 推進要因 市場の成長を促進します。
-
ヘルスケアにおける生成型人工知能(Gen AI)の推進要因には以下が含まれます。
どれの を占める地域 市場で最大のシェア?
-
北米は、2024 年にヘルスケアにおける生成型人工知能 (Gen AI) の主要な地域セグメントとなりました。