Reports - Artificial Intelligence In Genomics Market
Artificial Intelligence In Genomics Market Size, Share & Trends Analysis Report by Component (Software, Services, Hardware, Other Components) by Functionality (Genome Sequencing, Gene Editing, Gene Expression Analysis, Other Functionalities) by Application (Drug Discovery & Development, Precision Medicine, Development, Diagnostic Testing, Agricultural Genomics, Other Applications) by End User (Pharmaceutical & Biopharmaceutical Companies, Academic & Research Institutes, Healthcare Providers, Government Organizations, Other End Users) by Technology (Machine Learning, Natural Language Processing (NLP), Computer Vision, Robotics, Other Technologies) by Region (North America, Europe, Asia Pacific, Latin America, Middle East & Africa) - Historic Data (2021 - 2023) & Forecast Period (2025 - 2035)
Industry Leaders Trust Us For Actionable Intelligence
USD 785.12 Million
USD 28999 Million
38.85%
North America
Asia Pacific
2024
2021 - 2023
2025 - 2035
By Component, By Functionality, By Application, By End User, By Technology, By Region
The final deliverable will encompass both quantitative and qualitative data, providing a comprehensive analysis of the market. The scope is customizable.
The global Artificial Intelligence In Genomics Market is valued at USD 785.12 Million in 2024 and is projected to reach a value of USD 28999 Million by 2035 at a CAGR (Compound Annual Growth Rate) of 38.85% between 2025 and 2035.
Premium Insights
In the year 2022, the draught human genome sequence has been finished for 21 years. Unusually large amounts of genomic data have been produced as a result of this milestone. Within the next ten years, it is estimated that data generated by genomics research will amount to 2 to 40 exabytes. The quantity and complexity of such data sets will keep growing as a result of DNA sequencing and other biological techniques. Because of this, researchers studying genomics require computational tools based on AI that can handle, extract, and interpret the useful information concealed within this vast trove of data. Even though genomics is only just beginning to use AI tools, researchers have already benefited from creating programs that help in particular ways. Several instances include; examining the faces of individuals using facial analysis accurate genetic disorders identification by AI programs, analyzing a liquid biopsy to determine the primary type of cancer using machine learning techniques, and predicting the course of a particular type of cancer in a patient, using machine learning to distinguish between genomic variants that cause disease and those that do not, using deep learning to enhance CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) capabilities as a gene editing tool.
Artificial intelligence (AI) applications have significantly advanced technology in the field of genomics. As an illustration, Next-generation phenotyping (NGP) technologies capture, organize, and analyze human physiological data to generate practical insights and enable thorough, accurate genetic assessments. NGP assists clinicians in making a quicker and more accurate diagnosis of genetic disorders by analyzing clinical texts, photos, and data from patients. These innovations advance genomics study and medical care by advancing our knowledge of human genetics, enhancing diagnostics, and enabling targeted treatments for a range of diseases.
A public database with genomic data has recently received official FDA recognition, which is a significant step toward advancing precision medicine and cutting-edge diagnostic methods. The organization is recognizing the genetic variant data in the ClinGen Expert Curated Human Genetic Data, an NIH-funded database maintained by the Clinical Genome Resource (ClinGen) consortium. With this recognition, test creators including those who employ next-generation sequencing can rely on the data in the database to bolster the reliability of their tests rather than having to produce it themselves.
Key Takeaways
Economic Insights
The market for Artificial Intelligence In Genomics is significantly impacted by economic issues, which can have both positive and negative effects. Financial constraints can impede AI research and development by restricting the development of sophisticated algorithms and models, but they can also spur innovation and cost efficiency. For instance, the adoption of AI in genomics has been facilitated by lower sequencing technology costs and increased computing power, allowing for quicker and more accurate analysis of genetic data. The fact that many genomics AI tools are open source has also democratized access, ensured global participation, and raised the possibility of scientific breakthroughs.
Top Market Trends
Market Segmentation
The global Artificial Intelligence In Genomics market can be segmented based on the following: Component, Technology, Functionality, Application, End-User, and Regions. Based on the Component, the market can be categorized into Hardware, Software, and Services. Additionally, based on Technology, the market can be split into Machine Learning, Natural Language Processing (NLP), Computer Vision, Robotics, and Other Technologies. Furthermore, based on Functionality, the market can be categorized as Genome Sequencing, Gene Editing, Gene Expression Analysis, and Other Functionalities. Based on Application, the can market can be divided into Precision Medicine, Drug Discovery, And Development, Diagnostic Testing, Agricultural Genomics, and Other Applications. Furthermore, based on End-users, the market can be categorized as Biopharmaceutical & Biotechnology Companies, Healthcare Providers, Academic & Research Institutions, Government Organizations, and Other End-Users. Likewise, based on Region, the market is segmented into North America, Europe, Asia Pacific, Latin America, and Middle East & Africa.
Based on Component
These Software Components are Integral in Handling and Interpreting Massive Genomic Datasets, Enabling Researchers to Derive Meaningful Insights
Software is the dominant category in the artificial intelligence component segment of the Artificial Intelligence In Genomics market. When using AI algorithms to analyze and interpret genomics data, the software component is essential. It is essential to machine learning, data mining, and data visualization tasks because it enables scientists to draw valuable conclusions from sizable genomic datasets. Powerful tools for genomics analysis, gene expression profiling, variant calling, and genomic data management are available from top AI genomics software providers.
Based on Technology
In the Technology Segment, Machine Learning Algorithms are the Primary Focus
Machine learning is the dominant category in the Artificial Intelligence In Genomics markets technology sector. In order to process and interpret genomics data, machine learning algorithms are frequently used. This helps researchers find patterns, forecast outcomes, and develop a deeper understanding of the intricate relationships within the genome. This technology revolutionizes the field of precision medicine by making it easier to identify genetic variations, disease predisposition, personalized medicine, and drug discovery.
Based on Functionality
AI-Powered Tools and Platforms are Enabling Faster and More Accurate Genome Sequencing, Revolutionizing the Field of Genomics
Genome sequencing is a market leader in the functionality sector of the Artificial Intelligence In Genomics market. Genome sequencing has gotten faster and more effective thanks to developments in AI technology. With the help of AI tools, scientists can identify genetic variations, comprehend disease mechanisms, and advance personalized medicine. Genome sequencing has transformed genomics research and has enormous potential for identifying and treating genetic disorders.
Based on Application
AI-Driven Algorithms have the Capability to Identify Potential Drug Targets, Predict Drug Efficacy, and Optimize Drug Discovery Processes
Drug discovery and development dominate the Artificial Intelligence In Genomics market when it comes to the application segment. Genomic data can be mined and analyzed by AI algorithms to find potential drug targets and forecast the effectiveness of potential drugs. As a result, the time it takes to discover new drugs has been sped up, opening up new possibilities for precision medicine. AI-based methods have the potential to hasten the discovery and development of novel therapeutic approaches, ultimately resulting in more potent medications and patient-specific treatments.
Based on End-User
AI Technologies are Being Extensively Utilized by Pharmaceutical and Biotech Companies to Streamline their Research and Development Efforts
The market for Artificial Intelligence In Genomics is dominated by the pharmaceutical and biotech sectors. To fully take advantage of the enormous potential of genomics data in drug development pipelines, these industries heavily rely on AI technologies. Pharmaceutical and biotech companies can streamline clinical trials, create targeted therapies, and improve patient outcomes by combining AI algorithms with genomics research. These industries can now make data-driven decisions, improve research and development procedures, and perhaps even change the course of medicine in the future with personalized therapies and precision medicine techniques thanks to AI-powered genomics platforms.
Based on Region
The Largest Region in the Artificial Intelligence In Genomics market in North America
Due to the presence of numerous market participants, including Danone, Abbott, Nestlé, Targeted Medical Pharma, Inc., and Mead Johnson & Company, LLC, among others, North America held the majority of the global Artificial Intelligence In Genomics market share of about 29.2% in terms of revenue in 2022. Some of the largest and best-funded biotechnology companies and research institutions in the world are based in North America, and these institutions are making significant investments in the creation of AI-powered solutions for genomics. As a result, the market for AI in genomics is expanding in North America and is driving the creation of new software and tools for the analysis of genomic data.
By enhancing data analysis, disease diagnosis, and drug discovery, AI has revolutionized genomics. For instance, the well-known American AI-based genomics company 23andMe offers customized genetic testing services to people, giving them information about their ancestry and potential health risks. Furthermore, Deep Genomics, a Canadian AI-driven genomics platform, uses deep learning algorithms to find disease-causing genetic mutations and quicken the development of targeted treatments. These developments demonstrate North Americas leadership in utilizing AIs potential to revolutionize genomics and its applications for enhancing human health.
Competitive Landscape
Major companies are making significant investments in AI technologies to advance genomic research and analysis, including Google, IBM, and Microsoft. Startups like DNAnexus and Tempus, which provide creative solutions to speed up genomics-driven advancements in healthcare, are also making important contributions. Collaborations between established businesses and up-and-coming players are common, fostering vibrant alliances that seek to revolutionize the industry and enhance patient outcomes. The fierce competition is fostering constant innovation and expanding the potential of genomics-related AI applications. For instance, Titan and Apollo are the two main products that DNA Nexus offers. Titan focuses on the high-throughput processing of genomic data to find mutations and variants and to create substantial, high-quality genomic data sets. (Titan is used to support discovery but is also heavily used in the diagnostic space.) Apollo gives users the ability to conduct intricate analyses on sizable genomic data sets, combining genomic and phenotypic information from clinical trials, medical records, and other sources, in order to identify and correlate mutations with a particular disease outcome, disease progression, or other factors, in order to aid researchers looking for new drug targets.
The key players in the global Artificial Intelligence In Genomics market include - Microsoft Corp. (U.S.) among others.
Recent Market Developments
Segmentation of the Global Artificial Intelligence In Genomics Market
Parameter | Details |
---|---|
Segment Covered | By Component
By Functionality
By Application
By End User
By Technology
By Region
|
Companies Covered |
|
Customization Scope | Enjoy complimentary report customization—equivalent to up to 8 analyst working days—with your purchase. Customizations may include additions or modifications to country, regional, or segment-level data. |
Pricing and purchase options | Access flexible purchase options tailored to your specific research requirements. Explore purchase options |
Key features include:
Contact
Toll Free Number+1 (877) 462-2282